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Largest Lyapunov-exponent estimation and selective prediction
by means of simplex forecast algorithms

Rudolf M. Dünki
Computer Assisted Physics Group, University of Zu¨rich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland

~Received 20 January 2000!

Limited predictability is one of the remarkable features of deterministic chaos and this feature may be
quantized in terms of Lyapunov exponents. Accordingly, Lyapunov-exponent estimates may be expected to
follow in a natural way from forecast algorithms. Exploring this idea, we propose a method estimating the
largest Lyapunov exponent from a time series which uses the behavior of so-called simplex forecasts. The
method considers the estimation of properties of the distribution of local simplex expansion coefficients. These
are also used for the definition of error bars for the Lyapunov-exponent estimates and allows for selective
forecasts with improved prediction accuracy. We demonstrate these concepts on standard test examples and
three realistic applications to time series concerning largest Lyapunov-exponent estimation of an experimen-
tally obtained hyperchaotic NMR signal, brain state differentiation, and stock-market prediction.

PACS number~s!: 05.45.Tp, 07.05.Kf, 89.90.1n, 87.10.1e
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I. INTRODUCTION

Chaotic dynamics has been investigated in a broad s
trum of systems, e.g., in astrophysics, meteorology, chem
try, biology, medicine, electronics, and finance. Despite t
frequent occurrence, the analysis of a time series of ap
ently chaotic data is still not a trivial task. For example,
experimentalist searching for properties like topological
variants is often confronted with an irregularly oscillatin
time series. From such a series it is not always easy to
duce quantities indicative of chaos. In principle, there
two different types of procedures available for such an an
sis. The first one tries to assess whether a fractal dimen
can be ascribed to the underlying system. The most pop
of these approaches is probably the so-calledD2 algorithm
of Grassberger and Procaccia@1#. This approach, however, i
somewhat ambiguous for two reasons.~i! Under certain
conditions, colored noise can also mimic an apparent fra
structure@2#. ~ii ! In the overwhelming number of case
fractality is a sign of a chaotic system, but theory forbi
neither fractality combined with nonchaoticity@3,4# nor non-
fractality with chaoticity~see, e.g., the logistic equation
a54 or the Mackey glass system att540 @5#!. The second
type of procedures is closer to the essence of chaos itse
tries to assess exponential separation of nearby trajecto
thus directly determining the system’s predictability. Me
sures likeK entropy@6# and Lyapunov exponent~LE! esti-
mates@7–10# belong to these indicators. Having assessed
least the largest Lyapunov exponent to be positive one
mediately knows that there is a positiveK entropy and thus
chaos.

There exist several algorithms for assessing Lyapunov
ponents: Some for the estimation of the largest Lyapu
exponent~LLE! @7,11#, or all positive LE@12#, or all-positive
and -negative LE@9#, and even some for estimating loc
expansion spectra@10#. These algorithms, however, requi
one to select an evolution time for the nearby states wh
may introduce ambiguity. The role which the different sp
tial directions play is another common feature of these al
rithms: The assessment of LE’s usually requires frequent
PRE 621063-651X/2000/62~5!/6505~11!/$15.00
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specific changes of the reference system, e.g., through
orthogonalization or appropriate angular adaptions to a
erence trajectory~though not strictly necessary@13#!. By an-
gular adaptions we mean the necessity of restricting
choice of a piece of a nearby trajectory to cases where
spatial orientation with respect to the reference trajectory
similar to the orientation of the preceeding piece@7#.

In contrast to these restrictions, we propose a met
based on the class of so-called simplex-forecast algorith
@14,15# which does not rely upon such specific changes
two respects: ~1! We do not consider angular adaptions f
the separation of trajectories. This is because our algori
is based on the onset of dominance of the largest Lyapu
exponent and, at this onset, the separation of nearby tra
tories is governed by this exponent.~2! Our treatment leads
to a measure providing a suitable evolution time at wh
this onset of dominance sets in.

An algorithmic outline of the method is found in Sec. I
This is intended as a quick reference for the reader w
wishes to skip the Methods section at a first read throu
We formally deduce the framework in the Methods sect
~Sec. III! where we also present a method for calculati
approximate error bounds. This method is demonstrated
an artificial didactic example in Sec. IV and then explor
with several test systems in Sec. V. We then apply our c
cepts in Sec. VI onto a hyperchaotic NMR Raser system@16#
with delayed feedback@17#. In Sec. VI we also show furthe
and qualitative aspects to be potentially useful in the con
of rather soft data~medical and/or financial!. The usage of
the distribution of local simplex expansion coefficients a
the concept of selective prediction are applied. The la
allows the selection of potentially good candidates for fo
casts and the rejection of potentially bad candidates, ther
leading to fewer forecasts with higher accuracy for the
maining ones.

In brief, the advantages of our method may be stated
follows. ~1! It is a spin-off gaining more information from
a class of existing forecast algorithms.~2! It allows for the
definition of error bars. ~3! It improves forecast perfor-
mance compared to the original algorithm.
6505 ©2000 The American Physical Society
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6506 PRE 62RUDOLF M. DÜNKI
II. OUTLINE OF THE METHODS

Simplex forecasting as originally suggested by Sugih
and May @14# or improved variants thereof~e.g., the so-
called local hyperplane approximation~LHA ! approach@15#!
are well known examples of those nonlinear forecasting
gorithms that try to approximate an unknown part of a t
jectory through the construction of a local linear map fro
states in the neighborhood. Consider such a trajectory
m-dimensional phase space and a pointX0

k(tk) on it which is
hit at time tk (k51, . . . ,n). A simplex enclosing this refer
ence point then consists ofm11 points in such a manne
that the vectors between the reference point and the sim
points contain components in allm directions. Hence the
technique requires constructing a suitable simplex aro
this reference point with the help of nearby points obtain
from earlier observations. The forecast is then simply c
structed from the evolution of the simplex, i.e., the image
the simplex one forecast-time-unitT later.

Let X0
k(tk) denote the reference point andXi

k(tk) its i th
simplex neighbor. Then thei th simplex vectorai

k is written
as Xi

k(tk)2X0
k(tk), 1< i<m11. Resetting the timet to t

2tk and omitting the indexk for the moment, we may re
write the reference point in the formX05( iXi(0), i.e., as
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the ~weighted! sum of its simplex neighbors. The forecast
time T will then be constructed from the evolved simple
neighbors:XT5( iXi(T).

It will be shown in Sec. III that this quantity may be use
for the largest Lyapunov-exponent estimation together w
an error bar. Anticipating some results from the next s
tions, an algorithmic scheme of the important steps in t
procedure may be given as follows.

~1! From the time series under consideration, we sele
population of reference points and construct simplicesX0
around each such reference point. Let the simplices evo
into XT for a series of forecast timesT.

~2! Build the basic quantity, namely, the correlationsrTT
@cf. Eq. ~2.10! below#,

rTT5rS ( log@ uXi~T!2XTu/uXi~0!2X0u#,uX̃T2XTu D ,

~2.1!

whereX̃T stands for the true outcome.
~3! Determine the first maximum ofrTT with respect toT.
~4! Choose this time and build the corresponding larg

Lyapunov exponent as@Eq. ~3.20!#
l1
app5

mS (
i

log@ uXi~T1DT!2XT1DTu#2(
i

log@ uXi~T!2XTu# D
DT

, ~2.2!
tion

the

g-
wherem denotes the mean.
~5! From the population of simplices build the first deriv

tive with respect toT

drTTª
DrTT

DT
, ~2.3!

decompose it into its four basic terms@cf. Eq.~3.13!# and use
them to calculate the error term~3.18b! which is shown to
contain—in the statistical sense—the errorDl ~see below!.

~6! To quantify the statistical assessment, choose a co
dence levela and determine the associated normaliz
deviation ^uX̃T2XTuk& from the zero level such tha
P(^uX̃T2XTuk&)<12a.

~7! The error term together with this deviation allow ca
culating the errorDl corresponding to this levela @cf. Eqs.
~3.24! and ~3.25! below#.

III. DERIVATION OF THE METHODS

As outlined above, a simplex forecast is obtained from
evolution of the simplex around the reference poi
( iXi(0)→( iXi(T). The shape of the simplex thereby unde
goes a change~cf. Fig. 1! and an easily obtained measure
this change is the average simplex’ expansion, i.e., the a
aged logarithmic expansion of the single nearby neighb
localized aroundX0 ,
fi-
d

e
:
-

r-
rs

(
i

log@ uXi~T!2XTu/uXi~0!2X0u#. ~3.1!

Similarly, we may estimate the differenced between the
forecast and the true outcomeX̃T ,

dT5UX̃T2(
i

Xi~T!U. ~3.2!

For dynamic systems, this may be thought of as the evolu
~expansion! of an initial tiny, but unavoidable differenced0 ,

d05UX̃02(
i

Xi~0!U[uX02X̃0u. ~3.3!

In terms of dynamic systems theory, we may linearize
evolution of this difference and write~up to phase factors
@18#!

dT5d0•U(
j

bj~T!ej exp~l jT!U, j 51, . . . ,m ~3.4!

where theei denote the unit vectors collinear with the ei
envectors of this linearized dynamics andbi(T) are the am-
plitudes,

bj~T!5~ej ,d0
v!. ~3.5!
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FIG. 1. Scheme of the evolution of small dif
ferences in two dimensions. An initial tiny differ
enced0 ~filled triangle! at T50 between a trajec-
tory ~solid line! andX0 ( ^ ) grows atT54 to dT

~double arrow! between the two. Similarly, the
three simplex points~a,b,c! are mapped to their
new locations~A, B, C! and the difference be-
tween the three points andX0 or XT , respec-
tively, expands~arrows!.
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Hered0
v represents the difference vectorX̃02( iXi(0).

We now assume the difference between any of theXi(0)
andX0 to be small and analogously set,

ai j ~T!5~ej ,ai !5„ej ,Xi~0!2X0…, ~3.6!

hence similarly

Xi~T!2XT.(
j

ai j ~T!ej exp~l jT! ~3.7!

and therefore

(
i

log@ uXi~T!2XTu/uXi~0!2X0u#

5(
i

logS U(
j

ai j ~T!ej exp~l jT!U D
2 logS U(

j
ai j ~0!ejU D . ~3.8!

In an intermediate time range, the evolution of the sm
scale dynamics is described by the largest Lyapunov ex
nent ~LLE! l1 @18#, namely, when dominance of the LL
has set in. In that case, the inner sum of Eq.~3.8! becomes

U(
j

ai j ~ t !ej exp~l j t !U
5exp~l1t !S Uai1~ t !1(

j 52
ai j ~ t !ej exp@~l j2l1!#tU D

.exp~l1t !uai1~ t !u. ~3.9!

Hence local expansion coefficients may be used to estim
the largest Lyapunov exponent, if this time range is know

Let us drop the formal distinction between particu
single values„Xi

k(T),XT
k
… and the set of all such local value

$Xi
k(T),XT

k%, k51, . . . ,n for the moment. We regard instea
the former to be a representation drawn from the distribut
of the latter@Fig. 2~a! displays an example of such a distr
ll
o-

te
.

n

bution, cf. Sec. IV# and we describe it in terms of standa
statistical measures. This view is first used to calculate
correlation

rTT5rS ( log@ uXi~T!2XTu/uXi~0!2X0u#,

UX̃T2( Xi~T!U D . ~3.10!

The usefulness of this quantity will be demonstrated in Se
III A–III C when we ~i! in Sec. III A show this correlation to
provide the appropriate time range searched for~i.e., the on-
set of dominance of the largest exponentially growing ter!
when it passes the maximum with respect toT; ~ii ! in Sec.
III B derive important properties at the onset of dominance
extract the LLEl1 at this point;~iii ! in Sec. III C make use
of these same properties to calculate an approximate e
estimates(l1). So far, we introduced the basic treatment
simplex expansion and outlined the ideas of our metho
We now turn to Sec. III A and focus on the properties
rTT .

A. Derivation of the appropriate time range and maximum
passage ofrTT

The essential point is our claim that an appropriate ti
range may be found when the correlationrTT ~3.10! passes
the maximum withT increasing. The following convention
will be useful in this context:

~ i! DXT
i [uXi~T!2XTu,

~ ii ! DXT0
i [@ uXi~T!2XTu#/@ uXi~0!2X0u#,

~ iii ! logDXT0[(
i

log~DXT0
i !,

~ iv! DXTs[UX̃T2( Xi~T!U
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FIG. 2. ~a! Distribution ~histogram! of the di-
dactic examples’ local expansions atT54 ~units
of incremental time steps!. ~b! Various esti-
mates of the didactic example vs evolution tim
Straight line:l; plus sign:l1

app; dotted line: 99%
interval for l1

app at T54; dash-dotted line: 95%
interval ~all in units of bit/incremental time step
as shown on the left scale!; circles: correlation
according to Eq.~3.10!; solid curve: correlation
of the exponentially expanding terms used in E
~3.14! ~right scale!. Note the negative slope of th
dormer afterT54 and that the two correlation
become almost proportional after this point.
.,
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h
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~v! ares[

(
i
Uai1~T!1(

j 52
ai j ~T!ej exp~@l j2l1!T#U

U(j
ai j ~0!ejU ,

~vi! d f[] f /]t5] f /]T,

~vii ! d2f []2f /]t25]2f /]T2,

~viii ! ^x&[@x2m~x!#/s~x!,

wherem denotes the mean ands the standard deviation, i.e
^x& is a normalization to a~0,1! distribution. We note that the
derivativesd with respect toT are, in practice, only asses
ible from the time series, i.e., in the numerical sense. T
ranges of the subscriptsi,j,k are i 51, . . . ,m11; j
e

51, . . . ,m; k51, . . . ,n if not indicated otherwise, and we
write a correlation coefficientr as

r~a,b!5^a&•^b&, ~3.11!

where the• denotes componentwise multiplication first, the
summing up over alln terms and, finally, dividing the resul
by n. Using these conventions we may rewrite Eq.~3.10! as

rTT5^ log DXT0&•^DXTs& ~3.12!

and assess its first derivative

d(^ logDXT0&•^DXTs&

5^DXTs&•H ~d logDXT0!2dm~ logDXT0!

s~ logDXT0!
, ~3.13a!
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2^ logDXT0&
ds~ logDXT0!

s~ logDXT0! J ~3.13b!

1^ logDT0!&•H d~DXTs!2dm~DXTs!

ds~DXTs!
~3.13c!

2^DXTs& J ds~DXTs!

s~DXTs!
, ~3.13d!

whered denotes the derivative with respect toT. Recalling
our statement above, this has to be explored around
maximum of rTT . Equation~3.13! reduces in the case o
dominance of the exponentially expanding terms to

dr@l1T,exp~l1T!#5$^ log@exp~l1T!#&•d^exp~l1T!&%

5^l1&•d@^exp~l1T!&#,0 ~3.14!

because the variance term@i.e., the equivalent to Eq.~3.13d!#
dominatesd@^exp(l1 T)&#. Accordingly, the slope become
negative at the passage of this point@cf. Fig. 2~b! from the
example below for an illustration#. Passing the maximum
with T increasing indeed means the onset of dominance,
indicating the intermediate time range searched for.

B. Important properties when extracting l1 at the onset
of dominance

To get additional insight into Eq.~3.13!, let the temporal
incrementDT be small and denoteZªT1DT. Upon domi-
nance of the exponentially expanding term, one may set

rTZª^ logDXT0&•^ logDXz0&.r~l1T,l1Z!5O~1!.
~3.15!

Hence in the context of correlation estimates, theXZ may be
regarded to be approximately equivalent toXT . Using Eq.
~3.13c! this leads to

^ logDXT0&•
d~DXTs!2dm~DXTs!

s~DXTs!

.
s~DXZs

!rzz2s~DXTs!rTT

DT

.
ds~DXTs!

s~DXTs!
rTT1

s~DXZs
!

s~DXTs!
d2rTTDT/2. ~3.16!

The latter holds because rZZ.rTT1drTTDT
1d2rTT(DT)2/2 anddrTT is vanishing at the maximum~up
to numerical inaccuracies!. The impact of Eqs.~3.13c! and
~3.13d! thus depends on the second derivative~i.e., the cur-
vature! of the correlation~3.13! amplified with the variance
term

ds~DXZs
!

s~DXTs!
;11exp~l1DT!.

This is becauses(ax)5as(x) and one expectss(DXTs) to
grow to the order of exp(l). Hence Eq.~3.13c! is easily
extractable from experimental data.
he

us

To assess the remaining parts, Eqs.~3.13a! and ~3.13b!,
we keep in mind Eqs.~3.4! and~3.7!. ForT not too small and
again using s(ax)5as(x), we may approximate Eq
~3.13b! as

^ logDXT0&•^DXTs&
ds~ logDXT0!

s~ logDXT0!

.2r~ logDXT0 ,DXTs!/T. ~3.17!

Equation~3.13a! may be decomposed into two terms,

^DXTs&•
d@ logDXT02m~ logDXT0!#

s~ logDXT0!

5
s~l1!

s~ logDXT0!
^l1&•^DXTs& ~3.18a!

1
s~dares/ares!

s~ logDXT0! K dares

ares
L •^DXTs&.

~3.18b!

It is hardly possible to deduce Eq.~3.18! from an experimen-
tally obtained time series for each value ofT. However, upon
dominance of the LLE one may deduce it at least appro
mately: The term~3.18a! may, in this case be expanded a

s~l1!^l1&
s~ logDXT0!

•^DXTs&

5
s~l1T!/T

s~ logDXT0!
^l1&•^DXTs& ~3.19a!

5
s~l1T!/T

s~ logDXT0!
^l1T&•^DXTs& ~3.19b!

;
s~l1T!/T

s~ logDXT0!
^ logDXT0&•^DXTs&

~3.19c!

5O„r~ logDXT0 ,DXTs!/T…. ~3.19d!

Strictly speaking, the calculation of Eq.~3.18b! would re-
quire knowledge of̂ l1&, i.e., about the quanitity we ar
after. But Eqs.~3.19! suggest that this quantity is at lea
approximately retrievable from the time series without fu
ther knowledge aboutl1 . Now letrTT ~3.10! reach its maxi-
mum. The first derivative~3.13! must~up to numerical inac-
curacies, cf. below! become zero at this particular value ofT
and this implies that the sum over Eqs.~3.13b!–~3.13d! and
~3.19! is outweighted by the term~3.18b!. At first glance, the
motivation to actually calculate these terms is not obvious
practice, however, these quantities provide the basis fo
approximate error estimation when the largest Lyapunov
ponent is extracted at the onset of dominance:

The apparent exponentl1
app is assessed from Eq.~3.9! as

l1
app5

m~ logDXZ2 logDXT!

DT
~3.20!

and the relation to the true exponentl1 may be written as
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FIG. 3. Illustration of bivariate behavior
Standard deviations s(a): vertical arrow;
s(^b&k): horizontal arrow;s rel : double vertical
arrow. Note the occurrence of^b&k values cross-
ing the zero line~dotted! when the linear regres
sion curve ~straight line! is only around s rel

above this zero line.
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l1
app5l11ma , ~3.21!

where ma5m(dares/ares). At the onset of dominance, th
error ul12l1

appu is thus implicitly contained in Eq.~3.18b!.
The error is not directly accessible, however, because of
normalization to a~0,1! distribution, but a related quantity i
available:

Let sa5s(dares)/(ares) and ra5r(dares/ares,XTs). It
then follows that Eq. ~3.18b! provides the term
rasa /s(logDXT0) rather thanma and all that remains is to
gain statistical knowledge aboutma when the quantityrasa
is known.

C. Calculation of approximate error bounds

To make use of the above-mentioned properties for
quantification of error bounds whenrasa is known, let us
express the contribution of thekth individual value in the
statistical sense by means of linear regression,

S K dares

ares
L ^DXTs& D

k

.rasa~^DXTs&k!
21ma•^DXTs&k

1N~0,s rel!^DXTs&k . ~3.22!

This relates Eq.~3.18b! to the errorul12l1
appu in terms of

the regression line~3.22!. Here the symbolN(0,s rel) denotes
the normal distribution with mean 0 and standard deviat
s rel . The latter may be regarded as describing the sca
around the regression line. This scatter can also be calcu
by means of standard measures of linear regression:

s rel5saA12ra
2 ~3.23!

~Fig. 3!. We now may express the probability fordares/ares
to reach at least zero throughP(^DXTs&), namely, the prob-
ability of the occurrence of a particular value^DXTs&k such
that

urasa•^DXTs&kuiuma12s relu ~3.24!
e

e

n
er
ted

with uma12s relu5min(uma2srelu,uma1s relu). The assump-
tions entering in Eq.~3.24! are twofold: ~a! for any given
point ^DXTs&k , the probability of finding a nearby poin
^DXTs)&k8 whose image scatters at least one standard de
tion from the regression line may be set to 1;~b! this also
applies when the absolute valueurasa^DXTs&k1mau is only
one standard deviation away from zero~Fig. 3!. Note that the
term in absolute brackets is just the expectation value of
image of^DXTs&k .

Conversely, one might regard the meanm as the random
variable instead of̂ DXTs&. P(^DXTs&) then provides an
estimate for the probabilityP(umu>umau). This is thea pri-
ori probability for a certain meanm to occur with value for
ma when one fixes any hypothetical valuedares/ares to zero.
From this, one does not get an exact errorma but, rather, a
probability that it reaches a certain value.

The required quantitysa is also not known because Eq
~3.18b! contains the productsa•ra only. To obtain a worst
case guess, we fixsa , insert Eq.~3.23! in Eq. ~3.24!, and
maximize with respect tora . In this way, one finds forra at
a particular valuêDXTs&k ,

2ra

A12ra
2

5^DXTs&k . ~3.25!

Assuming normal distribution, we may setP(^DXTs&)
50.95 at^DXTs&51.96, accordingly,ra(1.96)50.89. Using
the Eqs. ~3.23! and ~3.24!, the quantity (1.96
21/0.89A120.892)51.45 leads to

umau95u1.45sa•ra . ~3.26!

Similarly, we find for P(^DXTs&)50.99 at ^DXTs&52.34,
ra(2.34)50.92, and (2.3421/0.92A120.922)51.91, lead-
ing to

mau99u1.91sa•ra . ~3.27!
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TABLE I. Individual contributions of the different equations to the errorma for the didactic example.

Quantity ~3.13b! ~3.13c! ~3.13d! ~3.19b! ~3.19d! sum s(log DXTO) sa•ra

Value 20.153 0.980 21.058 0.182 0.175 0.048 1.392 0.067
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Becauseumau95 andumau99 are our estimators of the 95% an
99% confidence intervals forma , i.e., P(umau<umaua)5a,
we may~somewhat redundantly! define an approximate erro
s(l1

app) through

s~l1
app!.~ umau95/1.961umau99/2.34!/2 ~3.28!

because, for a standard error distribution, one g
1.96s(l1

app)5umau95 and 2.34s(l1
app)5umau99.

IV. A DIDACTIC EXAMPLE

The above formalism may be best illustrated with a fic
tious didactic example. We call it didactic because we sim
late the properties of a dynamical system, but control cer
parameters in a way to nicely illustrate our concept. In p
ticular we may compare the exponentially expanding ter
to the whole evolution of the expansion coefficients. Here
regard an evolution of nearby points of a fictitious tw
dimensional system according to Eqs.~3.4! and ~3.7!,

DXT0
k 5exp@2l1~ tk!T#„a1~T,tk!

1a2~T,tk!exp$2@l2~ tk!2l1~ tk!#T%…
~4.1!

DXTs
k 5exp@2l1~ tk!T#„b1~T,tk!

1b2~T,tk!exp$2@l2~ tk!2l1~ tk!#T%…

where the incremental time steptk112tk is arbitrariliy set to
1. This system allows one to mimic the temporal variation
the respective termsai(tk ,T),bi(tk ,T) with a finite dynam-
ics with random coefficients,

ai~ tk ,T!5a0i~ tk!1a1i~ tk!sin~vT!,
~4.2!

bi~ tk ,T!5b0i~ tk!1b1i~ tk!sin~vT!,

i.e., a set ofn randomly choosen amplitudesa0i(tk),b0i(tk)
superimposed by another set of randomly choosen am
tudesa1i(tk),b1i(tk) with a sinusoidal variation of a perio
of 40 incremental time steps. The motivation for this partic
lar sinusoidal form was that~a! in the statistical sense, th
first derivative passes a true zero at a quarter period and
has an exact estimate at this point to compare with and~b! a
simultaneous zero of allai(tk),bi(tk) for a particular choice
of tk and T is avoided. The distribution of the local Lya
punov exponentsl1(tk) andl2(tk) corresponding to the two
directions were set to (m,s)510.60302, 033371! and
~211.203,6.3805!, respectively. This is comparable to th
values of the Henon system and the true estimate would
l50.603 bit/incremental time step.

Applying our technique, we find the passage of the ma
mum after a time corresponding to four lags@Fig. 1~b!#. In
this example, the onset of dominance of the exponenti
expanding terms obviously sets in earlier than the true z
of the first derivative ofai(t),bi(t), occuring at lag 10~quar-
ts

-
-
in
r-
s
e

f

li-

-

ne

be

i-

ly
ro

ter period!. This is displayed in Fig. 2~b! by the negative
slope and the apparent proportionality between these e
nential terms only and the correlationrTT @Eq. ~3.10!#. Our
LLE estimate may thus~expectedly! differ somewhat from
the true value and we find indeedl1

app50.670 atT54, i.e., a
difference of 0.0673.

This deviation, however, must be compared with the
sults of our error bound considerations: In this example
find the terms@Eqs. ~3.13b!, ~3.13c!, ~3.13d!, ~3.19b!, cf.
Table I# to sum up to 0.048. This leads tosara50.067 and
to intervals umau95.0.097 andumau99.0.128, respectively.
The latter is about twice the true error of 0.0673 which
turn is comparable with ours(l1

app)50.0520 @Eq. ~3.28!#.
These findings conform well to our analysis and the cor
sponding error bounds reveal the differences realistically

V. CHAOTIC TEST EXAMPLES

Testing the formalism of Sec. II with data from we
known model systems is another important step because
tests allow searching for systematic deviations between
sessed and true estimates. Our testing was done with
series of the standard systems Henon, Lorenz, and Roe
~ordinary and hyperchaos!. The corresponding time serie
were generated with standard parameter values from the
erature @7,6# and a fourth-order Runge-Kutta integratio
scheme with an adaptive time step was used for integrat
Our results were found through evaluating the behavior
2000 simplices for each example. The largest LE estim
resulting from our method is then compared with the cor
sponding value from the literature.

We note that slight complications may occur when es
mating the error from real-time series: In practice, the deri
tives have to be evaluated numerically from the time ser
This may lead to some mismatch because~1! Eq. ~3.19b! can
only be assessed approximately~cf. above!. Equation~3.19d!
was given as a rather intuitive example of such an appro
mation and is not intended to enter in the analysis. But si
lar considerations as those leading to Eq.~3.19d! suggest
approximations such as Eq.~3.19b! is approximately

rTT /s~ logDXT0!ds~DXT0!, ~5.1a!

d@rTTs~ logDXT0!#/s~ logDXT0!, ~5.1b!

d@rTTs~ logDXT0!#/s~ logDXT0!2drTZ , ~5.1c!

and these served as estimates for our test systems.~2! Equa-
tion ~3.13! does not exactly cancel to zero but, rather, to
residual error termEr ~cf. above!. We used a combination o
equations~5.1a!, ~5.1b!, and ~5.1c!, i.e., $@~5.1a!1~5.1b!#/2
1~5.1c!%/2 to deal with these imperfections and the diffe
ences considered in our error estimation were assumed
sum up toEr rather than to cancel out.

Table II displays the results obtained from these test s
tems: The differences between our LLE estimates and
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TABLE II. Largest Lyapunov exponent of test systems:l ~reference values from literature!, l1
app @LLE

derived from Eq.~3.20!#, difference to reference values, estimated 95%@Eq. ~3.26!#, and 99%@Eq. ~3.27!#
interval, reference value, difference to reference value ands(l1

app) @Eq. ~3.28!# for several test systems. Unit
are bit/sec, except for the Henon system which are given in bit/iteration. Literature values are two
overestimated and three times underestimated, pointing to the absence of systematic derivations.

System l l1
app ul1

app2lu umau95 umau99 s(l1
app)

Henon@7# 0.607 0.583 0.024 0.104 0.141 0.056
Roessler~hyperchaos! @7# 0.16 0.172 0.012 0.035 0.048 0.019

Roessler@7# 0.13 0.103 0.027 0.029 0.040 0.016
Lorenz @6# 1.298 1.288 0.010 0.522 0.705 0.281
Lorenz @7# 2.16 2.286 0.126 0.497 0.671 0.267
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reference values are well within our approximate er
bounds. In addition, no systematic underestimation or ov
estimation seems to occur. We therefore regard our me
to correctly estimate largest Lyapunov exponents. Fr
Table II one may even get the impression that our appro
mate error bounds are somewhat too pessimistic~which is
not excluded by our assumptions!. To test for this possibility,
we considered the ratios@ ul1

app2lu/s(l1
app)#2. If our error

estimates are correct, one expects these ratios to followx2

distribution. Accordingly, the occurrence of an overly sm
x2 value would be unlikely, thus indicating a systematic
fect. In our case we findx253.60, which seems to be som
what small at a first glance. The random chance occurre
of an even smaller value is not unlikel
@P(x2^3.60)&39%,d f55#, however, and we may conclud
that the result of our tests does not indicate systematic e
overestimation.

We note that such an overestimation, if existent, wo
only mean that our error estimates should be regarded
upper rather than true error bounds. The estimate would n
ertheless remain a valuable limit for error bounds in d
analysis because, in that case, the true value would co
dently lie between these bounds. As a last note, we men
that in most casesEr was comparable to the estimated err
and may thus provide a quick error estimate.
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VI. REAL WORLD APPLICATIONS

A. NMR Raser

In a nonstandard example of chaotic dynamics we con
ered the time series of a NMR raser in the hyperchao
region. In brief, this system consists of spins of Al atoms
a ruby crystal which are positioned in a radio-frequency fi
inside a cavity. Chaos is induced through temporally vary
the quality factor of the resonant structure. The device p
vides the voltage induced by the rotating magnetizat
across the coil of the LC resonator as output signal. A
tailed technical description of this NMR raser is given els
where in the literature@16,17,19#.

Our study refers to the signal obtained under hypercha
rasing conditions when the dimensionality (D2) is between 3
and 4 @20#. The signal was embedded in an appropria
m-dimensional space because only one component was a
able. This was achieved by means of delay-time coordina
@21# as usual. The embedding procedure introduces two
ditional free parameters, namely, the delay timet and the
embedding dimensionm. For m.D2 , one expects to find a
range wherel1

app is independent oft and m, however, be-
cause the LLE is an invariant of the system dynamics a
may not depend on the parameter choice. The common v
for l1

app within this range is regarded as the estimate of
ce
n-
FIG. 4. Estimates of the LLE~units of bit per
main oscillation time! of the NMR raser for sev-
eral embedding conditions. Note the convergen
towards a common value for embedding dime
sions four~encircled crosses! and five~stars! and
delay times between 0.15 and 0.3~units of main
oscillation time!.
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TABLE III. Largest Lyapunov exponentl1
app @Eq. ~3.20!#, estimated 95% intervalumau95 @Eq. ~3.26!#

relative to the main oscillation for several test systems and NMR raser. Units are bit/main osc.

Quantity Roessler Lorenz@6# Lorenz @7# Roessler hyperchaos NMR raser

l1
app 0.648 1.020 1.087 1.178 1.523

umau95 0.182 0.413 0.236 0.240 0.581
Main osc.~Hz! 0.159 1.263 2.103 0.146 45.45
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system’s LLE. Our example displays indeed such a ra
~Fig. 4! and the corresponding LLE becomes 1.523 bit/m
osc. We refer here to the somewhat unusual time u
‘‘main oscillation’’ because one might regard this time un
to represent the system’s natural time base. The time spa
one main oscillation may be assessed, e.g., through spe
analysis. A further advantage of this natural base is tha
allows for comparison with the test system’s outcom
~Table III!. In this regard, our LLE estimate is found to b
comparable with the values of the standard test systems

B. Distribution of local expansion coefficients
and selective prediction

Section III made use of the distribution of simplex expa
sion coefficients to search for a suitable forecast time for
estimation of a time series’ largest Lyapunov exponent. T
important quantity considered was the correlation betw
local simplex-expansion coefficients and the goodness of
corresponding local forecast. Throughout the preceding
tions, this has been shown to lead to suitable estimates o
largest Lyapunov exponent. In this section we present bri
two additional examples where~a! the distribution of local
simplex expansions itself~distinguishing biomedical signal
schizo control, Fig. 5! and ~b! the correlation between loca
simplex expansion and the quality of the corresponding lo
forecast~second derivatives of monthly recordings of an ec
nomic time series! might be used as tools characterizing tim
series. The latter is shown to allow for some kind of select
forecasting~Fig. 6!.
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The former example~a! is drawn from a larger electroen
cephalogram~EEG! study comparing schizophrenic patien
under different mental tasks with a control group match
for age, sex, education, qualification, and handedn
@22,23#. The simultaneous EEG from four frontal electrod
was selected for our example. This particular choice w
made because schizophrenia-specific effects may be
pected in the frontal area. The resulting time series is t
regarded as the time evolution of an unknown system i
four-dimensional phase space. Our simplex-expansion a
rithm was applied to three such time series of 30 sec du
tion, each to obtain an averaged distribution of local exp
sion coefficients. This was done for a person belonging to
patient and also for one from the control group and the t
distributions were compared. As is illustrated in Fig. 5, t
distributions of the two persons seem to differ. Without p
ting too much emphasis on the psycho-physiological me
ing of this result, it shows that the distribution of local e
pansion coefficients may contain characteristic featu
already assessible on a rather qualitative level.

As a last example~b!, an analysis of second difference
on monthly recordings of an economic time series, nam
the Dow Jones stock-market index between 1900 and 19
was performed. Differencing is required because the raw
ries must be regarded as nonstationary@24#. After differenc-
ing twice, the remaining time series showed an autocorr
tion of about 20.45 at lag one and no significan
autocorrelations at higher lags. One may therefore ded
that standard linear autoregressive forecasts should allow
nt

.

FIG. 5. Distribution~histogram! of local ex-
pansion coefficients for a schizophrenic patie
~— "! and control~—!. When compared to the
control, the former seems to be more left sided
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FIG. 6. One-step-ahead forecast of seco
differences of the Dow Jones index^d2DJ&(t0

11) vs d2DJ(t011), the true value of the sec
ond differences of the Dow Jones index aft
evolving one time step ahead. Stars: Forec
without considering local expansion coefficient
encircled: the forecasts remaining after deleti
points having large local expansion coefficien
The correlation between forecast and outcome
creases from 0.42~all forecasts, broken line! to
about 0.6~selected forecasts only, solid line!.
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a correlation between forecast and differentiated time se
of 0.45. The differentiated time series was subjected to
standard simplex-forecasting scheme resulting in a corr
tion r between the forecast and outcome of 0.42. Hence
standard nonlinear forecast seems to lead to a perform
on the order of a linear autoregressive forecast.

In a second step, the local simplex expansion was a
considered and the time series was reanalyzed. Reme
that a high local simplex expansion is associated with a c
siderable amplification of small inacurracies. We theref
rejected forecasts in those cases where the local expan
coefficient exceeded a certain threshold value. This pro
dure inevitably leads to fewer forecasts, but the remain
ones perform better~r>0.6, Fig. 6! and exceed the perfor
mance of the linear model. Our scheme thus provides a d
driven method for selecting those points in the time se
whose forecasts are potentially better than the average
casts are. By rejecting the rest, the scheme may be rega
as one way to practice selective forecasting.

VII. CONCLUSION

In conclusion, we propose an extension of a certain c
of forecasting algorithms. This extension explores the dis
a
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bution of local simplex expansion coefficients which allow
for estimates of the largest Lyapunov exponents toge
with error bounds. These estimates are correct in the follo
ing sense: The differences between the estimated LLE
the true LLE were found to lie within the error estimates f
the standard test systems. Considering the distribution of
pansion coefficients rather than their means allows one
distinguish between processes where the distributions
have identical means~e.g., LLE’s! but differ on the overall
shape of the distribution. Our scheme further allows for
lective forecasting which may considerably improve the p
formance of the forecast algorithm itself.
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