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Largest Lyapunov-exponent estimation and selective prediction
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Limited predictability is one of the remarkable features of deterministic chaos and this feature may be
guantized in terms of Lyapunov exponents. Accordingly, Lyapunov-exponent estimates may be expected to
follow in a natural way from forecast algorithms. Exploring this idea, we propose a method estimating the
largest Lyapunov exponent from a time series which uses the behavior of so-called simplex forecasts. The
method considers the estimation of properties of the distribution of local simplex expansion coefficients. These
are also used for the definition of error bars for the Lyapunov-exponent estimates and allows for selective
forecasts with improved prediction accuracy. We demonstrate these concepts on standard test examples and
three realistic applications to time series concerning largest Lyapunov-exponent estimation of an experimen-
tally obtained hyperchaotic NMR signal, brain state differentiation, and stock-market prediction.

PACS numbgs): 05.45.Tp, 07.05.Kf, 89.96:n, 87.10+e

[. INTRODUCTION specific changes of the reference system, e.g., through re-
orthogonalization or appropriate angular adaptions to a ref-
Chaotic dynamics has been investigated in a broad speerence trajectorythough not strictly necessaf{3]). By an-
trum of systems, e.g., in astrophysics, meteorology, chemiggular adaptions we mean the necessity of restricting the
try, biology, medicine, electronics, and finance. Despite thishoice of a piece of a nearby trajectory to cases where the
frequent occurrence, the analysis of a time series of appaspatial orientation with respect to the reference trajectory is
ently chaotic data is still not a trivial task. For example, ansimilar to the orientation of the preceeding pi¢@é
experimentalist searching for properties like topological in- In contrast to these restrictions, we propose a method
variants is often confronted with an irregularly oscillating based on the class of so-called simplex-forecast algorithms
time series. From such a series it is not always easy to d¢44,15 which does not rely upon such specific changes in
duce quantities indicative of chaos. In principle, there argwo respects: (1) We do not consider angular adaptions for
two different types of procedures available for such an analythe separation of trajectories. This is because our algorithm
sis. The first one tries to assess whether a fractal dimensids based on the onset of dominance of the largest Lyapunov
can be ascribed to the underlying system. The most populaxponent and, at this onset, the separation of nearby trajec-
of these approaches is probably the so-callgdalgorithm  tories is governed by this exponent(2) Our treatment leads
of Grassberger and Procac€id. This approach, however, is to a measure providing a suitable evolution time at which
somewhat ambiguous for two reasonsi) Under certain this onset of dominance sets in.
conditions, colored noise can also mimic an apparent fractal An algorithmic outline of the method is found in Sec. II.
structure[2]. (i) In the overwhelming number of cases, This is intended as a quick reference for the reader who
fractality is a sign of a chaotic system, but theory forbidswishes to skip the Methods section at a first read through.
neither fractality combined with nonchaoticit$,4] nor non- ~ We formally deduce the framework in the Methods section
fractality with chaoticity(see, e.g., the logistic equation at (Sec. Ill) where we also present a method for calculating
a=4 or the Mackey glass system at40[5]). The second approximate error bounds. This method is demonstrated on
type of procedures is closer to the essence of chaos itself: &n artificial didactic example in Sec. IV and then explored
tries to assess exponential separation of nearby trajectoriesjth several test systems in Sec. V. We then apply our con-
thus directly determining the system’s predictability. Mea-cepts in Sec. VI onto a hyperchaotic NMR Raser sydteéh
sures likeK entropy[6] and Lyapunov exponertE) esti-  with delayed feedbacKL7]. In Sec. VI we also show further
mates[7—10Q] belong to these indicators. Having assessed aand qualitative aspects to be potentially useful in the context
least the largest Lyapunov exponent to be positive one imef rather soft datgmedical and/or financial The usage of
mediately knows that there is a positileentropy and thus the distribution of local simplex expansion coefficients and
chaos. the concept of selective prediction are applied. The latter
There exist several algorithms for assessing Lyapunov exallows the selection of potentially good candidates for fore-
ponents: Some for the estimation of the largest Lyapunoxasts and the rejection of potentially bad candidates, thereby
exponen{LLE) [7,11], or all positive LE[12], or all-positive  leading to fewer forecasts with higher accuracy for the re-
and -negative LE9], and even some for estimating local maining ones.
expansion spectrfl0]. These algorithms, however, require  In brief, the advantages of our method may be stated as
one to select an evolution time for the nearby states whiclfollows. (1) It is a spin-off gaining more information from
may introduce ambiguity. The role which the different spa-a class of existing forecast algorithms(2) It allows for the
tial directions play is another common feature of these algodefinition of error bars. (3) It improves forecast perfor-
rithms: The assessment of LE’s usually requires frequent anchance compared to the original algorithm.
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Il. OUTLINE OF THE METHODS the (weighted sum of its simplex neighbors. The forecast at

. . - . time T will then be constructed from the evolved simplex
Simplex forecasting as originally suggested by Sugihara

) . _ nheighbors X=X X;(T).

22&3/'&/;5? Oérlrg%r:\éed rgi{:ﬁ;:@ir)ege'?ééér&isﬁf It will be shown in Sec. Ill that this quantity may be used
are well knov)\jﬁ e>F<)am Ieg pof those nonlinearl)rpforecastin aIlcor the largest Lyapunov-exponent estimation together with

. P X 9 @5n error bar. Anticipating some results from the next sec-
gorithms that try to approximate an unknown part of a tra-,. L . . ;
. : . tions, an algorithmic scheme of the important steps in this
jectory through the construction of a local linear map from rocedure mav be given as follows
states in the neighborhood. Consider such a trajectory in R ybe g )

di . L oh d ME‘@ it which i (1) From the time series under consideration, we select a
mraimensional phase space and a p K on itwhich 1 population of reference points and construct simpli2gs
hit at timet, (k=1,...n). A simplex enclosing this refer-

. . T around each such reference point. Let the simplices evolve
ence point then consists ofi+1 points in such a manner

; . into X for a series of forecast timeg
that the vectors between the reference point and the simplex (2) Build the basic quantity, namely, the correlatigns.

points contain components in ath directions. Hence the f. Eq. (2.10 below]
technique requires constructing a suitable simplex aroun[ic' o '
this reference point with the help of nearby points obtained
from earlier observations. The forecast is then simply con- _ Ty 0 3
structed from the evolution of the simplex, i.e., the image of ©T" p(z logl Xi(T) = Xl/1Xi(0) =Xo[ L[ X7 =X |,
the simplex one forecast-time-uriitlater. (2.2
Let X&(t,) denote the reference point ad(t,) its ith
simplex neighbor. Then thigh simplex vectora!‘ is written  whereX; stands for the true outcome.
as XX(t) — X§(ty), 1<i=m+1. Resetting the time to t (3) Determine the first maximum gf; with respect tor.
—1, and omitting the index for the moment, we may re- (4) Choose this time and build the corresponding largest
write the reference point in the forid,=2,X;(0), i.e., as  Lyapunov exponent g€q. (3.20]

| 2 10gl|Xi(T+AT) =X ar]] = 2 logl [ Xi(T) = X]]

AT '

AEPP— 2.2

where u denotes the mean.
(5) From the population of simplices build the first deriva- > 10gl [ X;(T) = Xl/1X;(0) = Xo| 1. 3.1
tive with respect tor '

Similarly, we may estimate the differencg between the

deT;:AAL_IT_T, (2.3  forecast and the true outcorg,
decompose it into its four basic terfef. Eq.(3.13] and use or= XT_Z Xi(T)|. 32
them to calculate the error ter(®.180H which is shown to
contain—in the statistical sense—the erfor (see below. For dynamic systems, this may be thought of as the evolution

(6) To quantify the statistical assessment, choose a confiexpansion of an initial tiny, but unavoidable differencs,
dence levela and determine the associated normalized

deviation (|X;—X¢|,) from the zero level such that
P Xs=X7l9)<1-a.
(7) The error term together with this deviation allow cal-

culating the erroA\ corresponding to this level [cf. Eqs.  In terms of dynamic systems theory, we may linearize the
(3.24) and (3.25 below]. evolution of this difference and writeup to phase factors

[18])

50220_2 Xi(o)’5|xo_io|- (3.3

Ill. DERIVATION OF THE METHODS

5‘[': 50' y J:]., ..M (34)

; b;(T)e; exp(\;T)

As outlined above, a simplex forecast is obtained from the
evolution of the simplex around the reference point:
> X(0)—=;X;(T). The shape of the simplex thereby under-where thee; denote the unit vectors collinear with the eig-
goes a changéf. Fig. 1) and an easily obtained measure of envectors of this linearized dynamics andT) are the am-
this change is the average simplex’ expansion, i.e., the aveplitudes,
aged logarithmic expansion of the single nearby neighbors
localized aroundXo, b;(T)=(ej,dp). (3.9
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FIG. 1. Scheme of the evolution of small dif-
ferences in two dimensions. An initial tiny differ-
enced (filled triangle at T=0 between a trajec-
tory (solid line) and X, (®) grows atT=4 to ot
(double arrow between the two. Similarly, the
three simplex pointga,b,c) are mapped to their
new locations(A, B, C) and the difference be-
tween the three points and, or X, respec-
tively, expandgarrows.

Here & represents the difference vechos— =, X;(0). bution, cf. Sec. I\J and we describe it in terms of standard
We now assume the difference between any ofxf(@)  Statistical measures. This view is first used to calculate the
and X, to be small and analogously set, correlation

PTT:P( > log[ | X;(T) = Xql/[Xi(0) = X1,
hence similarly

‘%—E xim). (3.10
xi(T)—xTz; ai;(T)e; exp(\;T) (3.7

The usefulness of this quantity will be demonstrated in Secs.
and therefore 11 A=11I C when we (i) in Sec. Il A show this correlation to
provide the appropriate time range searchedifer, the on-
B _ set of dominance of the largest exponentially growing jerm
Z logl[Xi(T) = X+l/IXi(0) = Xo] when it passes the maximum with respecfTta(ii) in Sec.
Il B derive important properties at the onset of dominance to
_ extract the LLE\ ; at this point;(iii) in Sec. Il C make use
_Z‘ Iog( EJ: 2;;(T)e, exp()\,-T)D of these same properties to calculate an approximate error
estimateo(\1). So far, we introduced the basic treatment of
simplex expansion and outlined the ideas of our methods.
We now turn to Sec. IllA and focus on the properties of

pTT-
In an intermediate time range, the evolution of the small
scale dynamics is described by the largest Lyapunov expo-
nent (LLE) \, [18], namely, when dominance of the LLE
has set in. In that case, the inner sum of E218) becomes

—|og<; a;;(0)e; ) (3.9

A. Derivation of the appropriate time range and maximum
passage ofpr

The essential point is our claim that an appropriate time
range may be found when the correlatipp; (3.10 passes

‘2 ajj(t)e eXIi)\jt)‘ the maximum withT increasing. The following conventions
! will be useful in this context:
:exﬁ)\lt)( ail(t)+22 ajj(t)e exli()\j—)\l)]t’) (i) AXE=X(T) =X,
J:
=exphab)]ain (V] 39 (i) AXro=[|X(T) =Xl V[ X(0) Xl ],

Hence local expansion coefficients may be used to estimate
the largest Lyapunov exponent, if this time range is known. i
Let us drop the formal distinction between particular (iii) |°9AXTOEZ log(AX70),
single valuegX¥(T),XX) and the set of all such local values
{X¥(T),X&}, k=1, ... n for the moment. We regard instead
the former to be a representation drawn from the distribution

of the latter[Fig. 2(a) displays an example of such a distri- (iv) AXTSE‘XT_E X‘(T)‘
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(b)
=1,...m; k=1,...n if not indicated otherwise, and we
> |ain(T)+ 22 aij(T)ej exp([A;—Aq)T] write a correlation coefficien as
i j=
(V) aI’GSE '

‘;aij(o)ej‘

(vi) df=aflot=0afldT,
(vii) d?f=02f/ot2=%f19T?,
(viit) (x)=[x=pun(x)]/o(x),

whereu denotes the mean andthe standard deviation, i.e.,
(X) is a normalization to €0,1) distribution. We note that the
derivativesd with respect toT are, in practice, only assess-

ible from the time series, i.e., in the numerical sense. The =(AX+g)-

ranges of the subscripts,j,k are i=1,... m+1; j

p(a,b)=(a)-(b), (3.1)
where the- denotes componentwise multiplication first, then

summing up over alh terms and, finally, dividing the result
by n. Using these conventions we may rewrite E810 as

pr7=(log AX1p) - (AXts) (3.12
and assess its first derivative

d({log A X1o) - (AXts)

(dlog AXro) —du(log AXrp)
o(logAXtg) '

(3.133
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do(logAX+o)
—(IogAXTO)ﬁ] (3.130
d(AX7e) —du(AXte)
(3.139
do(AX+g)
_<AXTS>]—0(I(AXT:) , (3.130

whered denotes the derivative with respectTo Recalling

our statement above, this has to be explored around the
maximum of pr1. Equation(3.13 reduces in the case of

dominance of the exponentially expanding terms to
dp[ N1 T, expN . T)]={(loglexp(A,T)])-d(exp\,T))}
=(Ny)-d[{exp(r;T))]<0 (3.14

because the variance tefire., the equivalent to Eq43.139]

dominatesd[({exp(, T))]. Accordingly, the slope becomes

negative at the passage of this pdiat. Fig. 2b) from the
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To assess the remaining parts, E&13a and (3.13b,
we keep in mind Eq93.4) and(3.7). For T not too small and
again using o(ax)=ao(x), we may approximate Eg.
(3.13b as

do(logAX+p)
<|Og AxTO> ’ <AXTS> o(log AXto)

:_p(IOgAXTo,AXTS)/T. (317}

Equation(3.133 may be decomposed into two terms,

dflog AXto— p(log AXro)]

<AXTS>'

o(log AX+g)
_ T ax (3.183
- O'('OgAXTo) < 1> < TS> .
0 (dares/Ares) | daes
o(log A%ro) < a> (A%ra.
(3.18h

example below for an illustratign Passing the maximum Itis hardly possible to deduce E(.18 from an experimen-
with T increasing indeed means the onset of dominance, thuglly obtained time series for each valueTofHowever, upon

indicating the intermediate time range searched for.

B. Important properties when extracting A, at the onset
of dominance

To get additional insight into Eq3.13), let the temporal
incrementAT be small and denoté:=T+AT. Upon domi-
nance of the exponentially expanding term, one may set

prz:=(10g AX1p) - (l0g AX;0)=p(N1T,\1Z)=0O(1).
(3.195

Hence in the context of correlation estimates, X3emay be
regarded to be approximately equivalentXe. Using Eq.
(3.1309 this leads to
d(AX7s) —du(AXry)

o(AX7s)

U(szs)Pzz_ o(AX7s)prT
N AT

(logAXto) -

do(AXty) +<T(szs)
T o(AXqe) PTT o(AXty)

d?pr7AT/2. (3.16

The latter holds because py,=pr7+dprAT
+d%pr1(AT)?/2 anddpry is vanishing at the maximurfup
to numerical inaccuraci@sThe impact of Eqs(3.139 and
(3.130d thus depends on the second derivative., the cur-
vature of the correlation(3.13 amplified with the variance
term

do(AXy)

————~1+exp\AT).

(%79 PAT)

This is becauser(ax) =ao(x) and one expects(A Xty to
grow to the order of exp(. Hence EQ.(3.139 is easily
extractable from experimental data.

dominance of the LLE one may deduce it at least approxi-
mately: The term3.183 may, in this case be expanded as

a(Np){(\1)
o(log AX+o) (AXr9

- m<)\l>'<Asz> (3.193

o TT
- o(log AX1) <)\1T> : <AXTS>

(3.19H
~ m<l09 AXro) - (AXts)
(3.190

Strictly speaking, the calculation of E¢3.18H would re-
quire knowledge of(\,), i.e., about the quanitity we are
after. But Egs.(3.19 suggest that this quantity is at least
approximately retrievable from the time series without fur-
ther knowledge about;. Now let pt1 (3.10 reach its maxi-
mum. The first derivativé3.13 must(up to numerical inac-
curacies, cf. beloyvbecome zero at this particular valueof
and this implies that the sum over E¢3.13H—(3.13d and
(3.19 is outweighted by the terrf8.18h. At first glance, the
motivation to actually calculate these terms is not obvious. In
practice, however, these quantities provide the basis for an
approximate error estimation when the largest Lyapunov ex-
ponent is extracted at the onset of dominance:

The apparent exponent’ is assessed from E3.9) as

,LL(IOg AXZ_ |Og AXT)
AT

app_
A. l -

(3.20

and the relation to the true exponent may be written as
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FIG. 3. lllustration of bivariate behavior.
Standard deviations o(a): vertical arrow;
a({b)y): horizontal arrow: double vertical
arrow. Note the occurrence ¢b), values cross-
ing the zero ling(dotted when the linear regres-
sion curve (straight ling is only around o
above this zero line.

ANPP=N1+ g, (3.21 With |pa+ — el =Min(|pua—avel, | wat oel). The assump-
tions entering in Eq(3.24) are twofold: (a) for any given
where u,= u(daes/a,ed. At the onset of dominance, the point (AXg), the probability of finding a nearby point
error [\, —\5Pq is thus implicitly contained in Eq(3.18D. (AX1¢))k whose image scatters at least one standard devia-
The error is not directly accessible, however, because of théon from the regression line may be set to(l) this also
normalization to &0,1) distribution, but a related quantity is applies when the absolute valljg,oo(AXte)k+ 14l is only
available: one standard deviation away from z€Fig. 3). Note that the
Let o,=0(daed/(a,ed and p,=p(daes/aes, X7s). It  termin absolute brackets is just the expectation value of the
then follows that Eq. (3.180 provides the term image of(AXroy.
paoalo(log AXqo) rather thanu, and all that remains is to ~ Conversely, one might regard the mearas the random
gain statistical knowledge abopt, when the quantitp,o,  variable instead of AX1s). P((AXzg) then provides an

is known. estimate for the probabilitf? (| u|=|u,|). This is thea pri-
ori probability for a certain meap to occur with value for
C. Calculation of approximate error bounds #a When one fixes any hypothetical valde,es/aes to zero.

. . From this, one does not get an exact emgrbut, rather, a
To make use of the above-mentioned properties for th%robability that it reaches a certain value.

guantification of error bounds whep,o, is known, let us The required quantityr, is also not known because Eq.

express the contribution of thieth individual value in the (3.18b contains the produat- p, only. To obtain a worst
B . - . a a "

statistical sense by means of linear regression, case guess, we fix,, insert Eq.(3.23 in Eq. (3.24, and

da. maximize with respect tp, . In this way, one finds fop, at
(< - > <A><Ts>) =~ pagal{AXr ) >+ pa (AXroy a particular valugA Xz,
res k
+N(O, AX . 3.2 -
(0,07e){AX78)K (3.22 1fa —(AXr . (3.2
This relates Eq(3.18 to the error|]A;—\3"] in terms of V=" Pa

the regression lin€3.22). Here the symboN(0,0.) denotes

the normal distribution with mean 0 and standard deviatiorAssuming normal distribution, we may sé?((AXrs))
0. The latter may be regarded as describing the scatter 0.95 at{(AX+g)=1.96, accordinglyp,(1.96)=0.89. Using
around the regression line. This scatter can also be calculatdde Egs. (3.23 and (3.24, the quantity (1.96

by means of standard measures of linear regression: —1/0.89/1—0.8F) =1.45 leads to
UreI:Ua\Jl_pg (3.23 |palos=1.450,- p,. (3.26

(Fig. 3. We now may express the probability fda,es/aes

to reach at least zero througt({(AX+s)), namely, the prob-
ability of the occurrence of a particular valga X1, such

that

Similarly, we find for P({(AX7s))=0.99 at(AX;s)=2.34,
pa(2.34)=0.92, and (2.341/0.92/1—0.9%)=1.91, lead-
ing to

|Pa0'a'<Asz>k|g|Ma+ _a'rel| (3.249 :Uva|9921-910'a'pa- (3.27)
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TABLE I. Individual contributions of the different equations to the erzgy for the didactic example.

Quantity (3.13h (3.130 (3.13d (3.19h (3.199 sum o(log AXte) T4 Pa
Value —-0.153 0.980 —1.058 0.182 0.175 0.048 1.392 0.067

Becausd u,|gs and| u,|qg are our estimators of the 95% and ter period. This is displayed in Fig. ®) by the negative

99% confidence intervals foi,, i.e., P(|ual<|talo) =, slope and the apparent proportionality between these expo-
we may(somewhat redundantlylefine an approximate error nential terms only and the correlatipirt [Eq. (3.10]. Our
a(\5™) through LLE estimate may thugexpectedly differ somewhat from

the true value and we find indead""=0.670 atT=4, i.e., a
o\ =(|palos/1.96+|nal0d2.34/2  (3.28 difference of 0.0673.
o This deviation, however, must be compared with the re-
because, for a standard error distribution, one getgyits of our error bound considerations: In this example we

1.967(N\ 1™ = | pales and 2.34 (N ™) =| w4l go- find the terms[Egs. (3.13h, (3.130, (3.13d, (3.19b, cf.
Table I to sum up to 0.048. This leads tg,p,=0.067 and
IV. A DIDACTIC EXAMPLE to intervals | u,|os=0.097 and|u,|q9=0.128, respectively.

. . . ... The latter is about twice the true error of 0.0673 which in
The above formalism may be best illustrated with a ficti- . ; appy _
. e TN .~ turn is comparable with ous-(\5"?) =0.0520[Eq. (3.28].
tious didactic example. We call it didactic because we simu- hese findinas conform well to our analvsis and the corre-
late the properties of a dynamical system, but control certairi- ondin err?)r bounds reveal the differexces realisticall
parameters in a way to nicely illustrate our concept. In par- P 9 y:
ticular we may compare the exponentially expanding terms

to the whole evolution of the expansion coefficients. Here we V. CHAOTIC TEST EXAMPLES
regard an evolution of nearby points of a fictitious two-  Tegting the formalism of Sec. Il with data from well
dimensional system according to E¢8.4) and(3.7), known model systems is another important step because such
tests allow searching for systematic deviations between as-
k _ _
AX7o=exi —A1(ti) T] (@ (T, t) sessed and true estimates. Our testing was done with time

+ay(T,t)exp —[Na(t) —N1(t)]TH series of the standard systems Henon, Lorenz, and Roessler
4.1) (ordinary and hyperchapsThe corresponding time series
Ax-krs: ext — A1 (t) T1(0y(T,t) were generated with standard parameter vaIues. from the lit-
erature [7,6] and a fourth-order Runge-Kutta integration
+ho(T,t)expl —[ Ao (t) =N (t) 1T scheme with an adaptive time step was used for integration.

Our results were found through evaluating the behavior of
where the incremental time step, ; —ty is arbitrariliy set to 2000 simplices for each example. The largest LE estimate
1. This system allows one to mimic the temporal variation ofresulting from our method is then compared with the corre-
the respective terma;(t,,T),b;(t,,T) with a finite dynam-  sponding value from the literature.

ics with random coefficients, We note that slight complications may occur when esti-
. mating the error from real-time series: In practice, the deriva-
a;(ty, T)y=a0;(ty) +al;(ty)sin(wT), tives have to be evaluated numerically from the time series.

, (4.2 This may lead to some mismatch beca(l§eEq. (3.19 can

bi(t,,T)=b0;(t,) + bl (t)sin(wT), only be assessed approximatéty. aboveé. Equation(3.19d

was given as a rather intuitive example of such an approxi-
mation and is not intended to enter in the analysis. But simi-
far considerations as those leading to E8.190 suggest
approximations such as E(B.19b is approximately

i.e., a set oh randomly choosen amplitude®);(t,),b0;(t,)
superimposed by another set of randomly choosen ampl
tudesal;(ty),b1;(t,) with a sinusoidal variation of a period
of 40 incremental time steps. The motivation for this particu-

lar sinusoidal form was thai) in the statistical sense, the pr1l/o(10gAXto)do(AXT), (5.1a
first derivative passes a true zero at a quarter period and one

has an exact estimate at this point to compare with(aha d[ prro(log AX+o) ]/ o(log AXqo), (5.1b
simultaneous zero of a;(t,),b;(t,) for a particular choice

of t, and T is avoided. The distribution of the local Lya- d[ prro(logAX+e) /o(logAXte) —dprz,  (5.10

punov exponents (t,) andA,(t,) corresponding to the two

directions were set to,0)=10.60302, 033372 and and these served as estimates for our test syst@nEqua-

(—11.203,6.380p respectively. This is comparable to the tion (3.13 does not exactly cancel to zero but, rather, to a

values of the Henon system and the true estimate would beesidual error ternk, (cf. above. We used a combination of

A =0.603 bit/incremental time step. equations(5.19, (5.1b), and (5.19, i.e., {{(5.18+(5.1b]/2
Applying our technique, we find the passage of the maxi-+(5.10}/2 to deal with these imperfections and the differ-

mum after a time corresponding to four lalgsg. 1(b)]. In  ences considered in our error estimation were assumed to to

this example, the onset of dominance of the exponentiallsum up toE, rather than to cancel out.

expanding terms obviously sets in earlier than the true zero Table Il displays the results obtained from these test sys-

of the first derivative of;(t),b;(t), occuring at lag 1@quar-  tems: The differences between our LLE estimates and the
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TABLE Il. Largest Lyapunov exponent of test systems{reference values from literatyre\3*P [LLE
derived from Eq.(3.20)], difference to reference values, estimated 9%4. (3.26)], and 99%[Eq. (3.27)]
interval, reference value, difference to reference valuecsgnd™) [Eq. (3.28)] for several test systems. Units
are bit/sec, except for the Henon system which are given in bit/iteration. Literature values are two times
overestimated and three times underestimated, pointing to the absence of systematic derivations.

System A AgPP INTPP=A] lmalos  lmales  a(AT™)
Henon[7] 0.607 0.583 0.024 0.104 0.141 0.056
Roesslerthyperchaog[7] 0.16 0.172 0.012 0.035 0.048 0.019
Roesslef7] 0.13 0.103 0.027 0.029 0.040 0.016
Lorenz[6] 1.298 1.288 0.010 0.522 0.705 0.281
Lorenz[7] 2.16 2.286 0.126 0.497 0.671 0.267
reference values are well within our approximate error VI. REAL WORLD APPLICATIONS

bounds. In addition, no systematic underestimation or over-
estimation seems to occur. We therefore regard our method
to correctly estimate largest Lyapunov exponents. From In a nonstandard example of chaotic dynamics we consid-
Table Il one may even get the impression that our approxiered the time series of a NMR raser in the hyperchaotic
mate error bounds are somewhat too pessimistitich is  region. In brief, this system consists of spins of Al atoms in
not excluded by our assumption3o test for this possibility, a ruby crystal which are positioned in a radio-frequency field
we considered the ratigg\;P"—\|/a(A$P)]2. If our error  inside a cavity. Chaos is induced through temporally varying
estimates are correct, one expects these ratios to follptv a the quality factor of the resonant structure. The device pro-
distribution. Accordingly, the occurrence of an overly smallvides the voltage induced by the rotating magnetization
x? value would be unlikely, thus indicating a systematic ef-across the coil of the LC resonator as output signal. A de-
fect. In our case we fing?=3.60, which seems to be some- tailed technical description of this NMR raser is given else-
what small at a first glance. The random chance occurrenc&here in the literatur¢16,17,19.
of an even smaller value is not unlikely  Our study refers to the signal obtained under hyperchaotic
[P(x%(3.60))39% df=5], however, and we may conclude rasing conditions when the dimensionali§y) is between 3
that the result of our tests does not indicate systematic err@nd 4 [20]. The signal was embedded in an appropriate
overestimation. m-dimensional space because only one component was avail-
We note that such an overestimation, if existent, wouldable. This was achieved by means of delay-time coordinates
only mean that our error estimates should be regarded 481] as usual. The embedding procedure introduces two ad-
upper rather than true error bounds. The estimate would newitional free parameters, namely, the delay timand the
ertheless remain a valuable limit for error bounds in dateembedding dimensiom. For m>D,, one expects to find a
analysis because, in that case, the true value would confiange where\{*? is independent ofr and m, however, be-
dently lie between these bounds. As a last note, we mentiocause the LLE is an invariant of the system dynamics and
that in most casek, was comparable to the estimated error may not depend on the parameter choice. The common value
and may thus provide a quick error estimate. for N§PP within this range is regarded as the estimate of the

A. NMR Raser

45} * .
41 ]
35- -
7
:
8 o i FIG. 4. Estimates of the LLEunits of bit per
£ main oscillation time of the NMR raser for sev-
%2'5' T eral embedding conditions. Note the convergence
s & towards a common value for embedding dimen-
’g 2r 7 sions four(encircled crossgsand five(starg and
L_.IT P delay times between 0.15 and Quhits of main
—15F * 1 oscillation time.
1F -
05 .
0 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3

Delay-time[units of main osc. time]



PRE 62 LARGEST LYAPUNOV-EXPONENT ESTIMATION AND . .. 6513

TABLE IlI. Largest Lyapunov exponenti* [Eq. (3.20], estimated 95% intervdlu,|qs [EQ. (3.26)]
relative to the main oscillation for several test systems and NMR raser. Units are bit/main osc.

Quantity Roessler Loren®] Lorenz[7] Roessler hyperchaos NMR raser
A§PP 0.648 1.020 1.087 1.178 1.523
| italos 0.182 0.413 0.236 0.240 0.581
Main osc.(Hz) 0.159 1.263 2.103 0.146 45.45

system’s LLE. Our example displays indeed such a range The former examplé€a) is drawn from a larger electroen-
(Fig. 4 and the corresponding LLE becomes 1.523 bit/maincephalogram{EEG) study comparing schizophrenic patients
osc. We refer here to the somewhat unusual time uniteinder different mental tasks with a control group matched
“main oscillation” because one might regard this time unit for age, sex, education, qualification, and handedness
to represent the system’s natural time base. The time span pf2 23. The simultaneous EEG from four frontal electrodes
one main oscillation may be assessed, e.g., through spectighs selected for our example. This particular choice was
analysis. A further advantage of this natural base is that ifjade because schizophrenia-specific effects may be ex-
allows for comparison with the test system’'s outcomes,ecied in the frontal area. The resulting time series is then
(Table 1lI). In t_hls regard, our LLE estimate is found to be regarded as the time evolution of an unknown system in a
comparable with the values of the standard test systems four-dimensional phase space. Our simplex-expansion algo-
rithm was applied to three such time series of 30 sec dura-
tion, each to obtain an averaged distribution of local expan-
sion coefficients. This was done for a person belonging to the
Section Ill made use of the distribution of simplex expan-patient and also for one from the control group and the two
sion coefficients to search for a suitable forecast time for thelistributions were compared. As is illustrated in Fig. 5, the
estimation of a time series’ largest Lyapunov exponent. Thalistributions of the two persons seem to differ. Without put-
important quantity considered was the correlation betweeting too much emphasis on the psycho-physiological mean-
local simplex-expansion coefficients and the goodness of thimg of this result, it shows that the distribution of local ex-
corresponding local forecast. Throughout the preceding se@ansion coefficients may contain characteristic features
tions, this has been shown to lead to suitable estimates of ttedready assessible on a rather qualitative level.
largest Lyapunov exponent. In this section we present briefly As a last examplégb), an analysis of second differences
two additional examples wher@) the distribution of local on monthly recordings of an economic time series, namely,
simplex expansions itse(flistinguishing biomedical signals the Dow Jones stock-market index between 1900 and 1995,
schizo control, Fig. band (b) the correlation between local was performed. Differencing is required because the raw se-
simplex expansion and the quality of the corresponding locaties must be regarded as nonstation@4)]. After differenc-
forecast(second derivatives of monthly recordings of an eco-ing twice, the remaining time series showed an autocorrela-
nomic time seriesmight be used as tools characterizing timetion of about —0.45 at lag one and no significant
series. The latter is shown to allow for some kind of selectiveautocorrelations at higher lags. One may therefore deduce
forecasting(Fig. 6). that standard linear autoregressive forecasts should allow for

B. Distribution of local expansion coefficients
and selective prediction
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FIG. 6. One-step-ahead forecast of second

differences of the Dow Jones indéxi?D ;) (to
+1) vs d?DJ(te+ 1), the true value of the sec-
ond differences of the Dow Jones index after
evolving one time step ahead. Stars: Forecast
without considering local expansion coefficients;
encircled: the forecasts remaining after deleting
points having large local expansion coefficients.
The correlation between forecast and outcome in-
creases from 0.42all forecasts, broken lineto
about 0.6(selected forecasts only, solid line

-40 4

_80 1 1 1 1 1 1
~15 —10 0 5 10 15
<d2DJ>(t0+1)

20

a correlation between forecast and differentiated time serielsution of local simplex expansion coefficients which allows
of 0.45. The differentiated time series was subjected to théor estimates of the largest Lyapunov exponents together
standard simplex-forecasting scheme resulting in a correlaxith error bounds. These estimates are correct in the follow-
tion p between the forecast and outcome of 0.42. Hence thihg sense: The differences between the estimated LLE and
standard nonlinear forecast seems to lead to a performangge true LLE were found to lie within the error estimates for
on the order of a linear autoregressive forecast. the standard test systems. Considering the distribution of ex-
In a second step, the local simplex expansion was alsgansion coefficients rather than their means allows one to
considered and the time series was reanalyzed. Remembgkiinguish between processes where the distributions may
that a high local simplex expansion is associated with a Cong e identical meang.g., LLE'9 but differ on the overall
siderable amplification of small inacurracies. We thereforeShape of the distribution. Our scheme further allows for se-

reJec.te.d forecasts in those cases where the local EXPansIpiyive forecasting which may considerably improve the per-
coefficient exceeded a certain threshold value. This ProC& mance of the forecast algorithm itself

dure inevitably leads to fewer forecasts, but the remaining
ones perform bettefp=0.6, Fig. § and exceed the perfor-
mance of the linear model. Our scheme thus provides a data-
driven method for selecting those points in the time series
whose forecasts are potentially better than the average fore- _ ) _
casts are. By rejecting the rest, the scheme may be regarded ! would like to thank J. Simonent for the NMR raser time
as one way to practice selective forecasting. series(University of Zuich Physics Institute M. Dressel
(Cantonal Psychiatric Clinic Rheingfor providing the EEG

signals, R. BertschiCredit Suisse Zich) for the financial
data, and R. Holzner and P.F. Meid@oth from the Univer-

In conclusion, we propose an extension of a certain classity of Zurich Physics Institute for many helpful discus-
of forecasting algorithms. This extension explores the distrisions.
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